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Abstract. For many businesses, preventing food waste along the whole supply chain has become a big issue. Custom-
ers’ interest in learning more about the source and origin of the food they consume develops along with their understand-
ing of environmental challenges. This work identified a research gap in the field-specific literature and posed the research 
question of whether the generally beneficial effects of smart farming, in particular, food tracing technologies, will be 
aberrative when examined in the context of individual situations. K-means clustering and principal component analysis 
(PCA) were employed to analyze the logistics system of a chosen dairy product company. This study provides a founda-
tion for further investigation into the system’s potential and to uncover new ways of streamlining digital logistics. It was 
demonstrated that the chosen food logistic system is highly influenced by the three parameters of “temperature for prod-
ucts transportation”, “season of time”, and “marketing”. Utilizing AI to incorporate these factors in the conservative food 
tracing system resulted in an increase in supply chain management accuracy by 95.6% and 97.7%, respectively. The find-
ings of the research can be applied to other fields of agricultural logistics that have particular transportation requirements.

Key words: food tracing, smart farming, artificial intelligence, dairy company.

Introduction

Preventing food waste along the whole supply 
chain has become a major problem for numerous 
enterprises. Customers’ awareness of sustainability 
issues grows along with their desire to learn more 
about the provenance and origin of the food they 
consume (Kayikci et al, 2020). The tendency has 
also been supported by the outbreaks of food poison-
ing caused by the improper transportation of goods 
(Aarnisalo et al, 2007).

To address the issue the logistics, the incorpora-
tion of the industry 4.0 era to agriculture took place 
(Spanaki et al, 2021), in other words, the smart-
farming emerged through the implementation of 
digitalized data management techniques (Spanaki et 
al., 2021). The scope of alteration had a particularly 
great effect on the supply chain management system 
of agriculture, providing an opportunity to develop a 
better operating system through the implementation 
of AI and blockchain techniques (Schmöckel,2021). 
Although the studies conducted on the topic have 
revealed a significant increase in enterprise profit-

ability rates, due to better pricing models and quality 
control of production, the models are still relatively 
new (Corallo et al., 2020). However, there are still 
certain restrictions, particularly in the area of food 
tracing methods. (Aung et al, 2014). 

This paper has identified a gap in research related 
to specific fields, and poses the question of whether 
the positive impact of smart farming, specifically 
food tracing methods, will have unexpected outcomes 
when studied in specific cases. The rational of the 
scope was based on the fact that considered models 
tend to cluster the cycle of the supply chain manage-
ment into major categories as a template (Olsen, 2010) 
and do not pay sufficient attention on the specifics 
of the agricultural sectors. We hypothesis that there 
should be a significant variation in AI performance 
based on the type of distributed food products (from 
dairy to protein-meat goods), and we plan to estimate 
these differences through the conceptual juxtaposition 
of the production cases. The findings of this paper will 
have a practical contribution to the development of 
theoretical underflows for the intelligent networks, 
adjusted to the category of the agro-logistics.
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Literature review

The context of the agricultural supply chain sys-
tem is related to the farming, processing, packing, 
storage, delivery, distribution, sales, and marketing of 
agriproducts (Kayikci et al., 2020). And, considering 
the contemporary perspective on sustainable produc-
tion, food processing enterprises are paying greater 
attention to implementing smart technologies in their 
logistics systems, meaning to develop more traceable 
and reliable food production (Greger, 2007). This ten-
dency stems from the continuous outbreaks caused by 
food poisoning (Resende-Filho & Hurley, 2012) and 
the vulnerability of such products to long-distance 
traveling (Olsen & Aschan, 2010).   It might also be 
said, that the spread of eco-friendly productions, fam-
ines in the developing nations, and a scarcity of food 
resources has greatly encouraged the development of 
smart agriculture (Olsen & Aschan, 2010).  

Implementation of information-based technolo-
gies and networks for achieving better data manage-
ment applications and precision in farming resulted 
in the gradual evolution of smart farming (Spanaki, 
2021). This development is not limited to the food 
production services, but is also highly linkages with 
agricultural supply chain management and logistics 
(Vlachos, 2008). The main goal of smart farming is 
to provide a transparent data flow (Cheng, 2019). 
The issue of transparency gained public attention as 
sustainability awareness rose and the crisis related 
to food unrest increased (Garcia-Torres et al,2019) 

Smart agriculture itself has various roots of de-
velopment. One of the most recent ones, blockchains, 
first appeared in the context of food-distributing 
channels in 2018 (Liu et al, 2021) and was account-
able for the development of the tracing systems. The 
rapid implantation to agriculture was motivated with 
blockchains decentralization and high-security rates 
(Ai et al., 2021; Mo et al., 2020). Although theoreti-
cal information control technologies have also been 
tried to be implemented in the management system 
of the supply chain, for almost a decade longer pe-
riod than blockchain, the results were inconclusive 
as the technology required manual integration of the 
data, meaning that the possibility of human biases 
remained unresolved (Liu et al, 2021). Some re-
searches attempted to investigate the result of col-
laboration between the information technologies as 
AI based blockchains, assuming that this integration 
will lead to transparency and transaction efficiency 
rise (Khan & Salah, 2018), however revealed the 
possible reverse effect on the development of the 
minutia agriculture as the shift in the resource man-

agement may slows the progression in other related 
fields (Liu et al, 2021).  

The existing implementations of the smart farm-
ing to the field of logistics are based on the informa-
tion sharing linked (Verdouw, 2011) to the strategic 
pricing, consequently aiming to increase the profit-
ability of each shareholder (Corallo, 2020). The type 
of data that is usually shared through the high-tech 
technologies are the yield rates, topographical, geo-
graphical data, images, and the used fertilization 
management (Kamilaris et al, 2017). Because the 
quantity of variables is unlimited and usually proper 
food tracing mechanism will require a vast amount 
information, it becomes challenging to create a pre-
dictive or analytical networks that will be able to 
find the proper underlying correlations and covari-
ances between variables (Spanaki, 2021). Thus, it is 
significant to understand whether the implementa-
tion of AI into the agricultural logistics can resolve 
the issue of abundant parameters properly. 

The main term this paper plans to focus on, 
traceability, was firstly defined roughly 3 decades as 
a method of mapping (Moe, 1998), and was follow-
ingly given a standardized definition of capacity to 
track the movement of the things of interest, storage 
of these movements information and traceability of 
the comprising the origin of materials.  The promi-
nence of traceability schemes in agriculture can be 
seen in the food production field (Dupuy, 2002) 
along with some other subcategories of the consid-
ered direction (Kim, 1995). The previous research on 
the topic of logistics, mostly ignored the unique dif-
ferences in the production system, and based the as-
sessment on the integral parts of the chain, by group-
ing the products inro the raw materials, ingredients 
and final products on each step of the cycle (Olsen, 
2010), however in some cases the particularity may 
be a crucial role as the food production parameters 
may range dramatically within one subfield itself. 

Overall, the conducted literature review revealed 
the pressing need for smart technologies integration 
to the field of agricultural supply chain manage-
ment. The existing methodologies provide a valu-
able foundation for the overall estimations of the 
AI, blockchain and information control technologies 
influence on the traceability of the food distribution. 
However, the existing approached mostly depend on 
the generalization of the supply chain stages which 
may leave out some important field-specific param-
eters and adjustments.  This paper will aim to focus 
on the most case-specific results to reveal more theo-
retical outflow for a better development of personal-
ized smart farming techniques. 
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Methodology

Since this paper is aiming to identify the case-
specific components for AI optimization that will 
enhance the performance of the smart-farming, it 
is reasonable to conduct a juxtaposing study of the 
generalized and individualized logistic models’ per-
formance. The company of the choice will be further 
referred in this work as Company A as it is a draft-
ing estimation of the results, meaning that the main 
company of interest with an available online infor-
mation is yet to be chosen.  

Overall, the methods process for the considered 
topic can be summarized in the following way: 

1. Gather the necessary information: Gather in-
formation on the company’s performance on impor-
tant measures including market share, client reten-
tion, financial performance, and customer happiness.

2. Cleanse and normalize the data as part of the 
pre-processing step.

3. Determine the cluster size: Pick the number of 
clusters that best fits the data. The elbow method or 
other clustering techniques can be used for this.

4. Use k-means clustering: Use k-means cluster-
ing to divide the data points into clusters.

5. Analyze the findings to identify which busi-
nesses are doing best and worst. Analyze the k-
means clustering results to identify which businesses 
are performing best and worst.

6. Perform a comparison: Evaluate the com-
pany’s performance in relation to important KPIs 
and

Results & Discussions

k-mean classification as a mean for choosing 
the Company A

The companies in the food tracing industry will 
be classified by their similarities through the unsu-
pervised mechanism of k-mean classification that 
groups by minimizing the Euclidian distance be-
tween the objects of consideration. Through such 
classification, it will be possible to cluster the com-
panies by their performance in terms of smart-farm-
ing logistics. The results shall look as it is shown in 
Figure 1. 

 
 

Figure 1 – a) k-mean clustering of the companies that use the food tracing mechanisms. 6 
images for 6 iterations to find optimal clustering condition, f being the result. b) the output 

classification by the quality 
 

With the silhouette and elbow method, the optimal number of clusters will be determined. The 
two of them demonstrate the trade-off between the quantity of components and the variation, or 
"inertia" in the context of k-means, in the outcomes. The "elbow" point designates the location where 
the inaccuracy and quantity are traded off most effectively. The graph below displays the elbow graph 
that came from Company A's study (Figure 2). 

 

 
 

Figure 2 – Elbow Approach Analysis of the Company A 
 

The decision is between the 5 and 6, however uncertain graph outputs, like Fig. 2, might be 
challenging to interpret. Therefore, extra silhouette analysis is performed in order to get precise 
separation distance estimates (Figure 3). The outcomes showed that six components would be the 
ideal number for the analysis, greatly reducing the operation's dimensions. 

Figure 1 – a) k-mean clustering of the companies that use the food tracing mechanisms. 6 images for 6 iterations 
 to find optimal clustering condition, f being the result. b) the output classification by the quality

With the silhouette and elbow method, the op-
timal number of clusters will be determined. The 
two of them demonstrate the trade-off between 
the quantity of components and the variation, or 
“inertia” in the context of k-means, in the out-

comes. The “elbow” point designates the location 
where the inaccuracy and quantity are traded off 
most effectively. The graph below displays the 
elbow graph that came from Company A’s study  
(Figure 2).
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Figure 2 – Elbow Approach Analysis of the Company A

The decision is between the 5 and 6, however 
uncertain graph outputs, like Fig. 2, might be chal-
lenging to interpret. Therefore, extra silhouette anal-
ysis is performed in order to get precise separation 

distance estimates (Figure 3). The outcomes showed 
that six components would be the ideal number for 
the analysis, greatly reducing the operation’s dimen-
sions.

 
 

Figure 3 – The script and the results of the silhouette analysis for Company A 
 
According to the values mentioned above, six clusters are the ideal number. After the companies 

will be clustered accordingly and sorted, it will be possible to find the gaps and the low-quality food 
tracing mechanisms that have been implemented. Because the existing method of traceability 
generalizes the supply-chain management without taking into consideration the sphere-specific 
differences, we assume that similar type of organizations – like those that produce only dairy or those 
that only specializes on the livelihood production – will have similarly low performance with AI on 
logistics. Among those in the low-quality group, one company will be chosen for possible 
optimization of the AI. The chosen company as for now is stated as company A which specializes in 
the dairy production.  

 
Food tracing performance estimation criteria 
The company A’s food-tracing performance will be analyzed according to the assurance and 

assessment of food quality provided by the Good Practices, FD. Overall, this process can be estimated 
on the four stages: forward tracking, backward tracking, and quality control.  The first two refers to 
the information searching in the flow from the raw materials up to the destination – customer, and in 
reverse pattern (Yu et al., 2016). Good tracking mechanism will mean that the up-to-date information 
from all the stages is available and used for reasonable evaluation of the product quality and 
reasonable optimization of the logistics system. The latter term is more sophisticated as the final value 
of the food quality is determined based on the data obtained through several stages, including the 
quality of raw materials, productions, transportation, sales, and after purchase satisfaction – rating.  

Based on the defined parameters the evaluating scheme has been generated for Company A. 
Assessment is based on information from the organization’s financial statement and publicly scoring 
systems .All of the values were ranked on the level from 1 to 10, creating a total score of 90 for all 
the values of assessment (Table 1).  

 
Table 1 – Assessment of food tracing system in Company A 
 

Evaluation Criteria Score (1- the 
lowest performance, 
10- the highest 
performance) 

Forward tracking 

Figure 3 – The script and the results of the silhouette analysis for Company A

According to the values mentioned above, six 
clusters are the ideal number. After the companies 
will be clustered accordingly and sorted, it will be 
possible to find the gaps and the low-quality food 
tracing mechanisms that have been implemented. 
Because the existing method of traceability gener-

alizes the supply-chain management without taking 
into consideration the sphere-specific differences, we 
assume that similar type of organizations – like those 
that produce only dairy or those that only specializes 
on the livelihood production – will have similarly 
low performance with AI on logistics. Among those 
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in the low-quality group, one company will be cho-
sen for possible optimization of the AI. The chosen 
company as for now is stated as company A which 
specializes in the dairy production. 

Food tracing performance estimation criteria
The company A’s food-tracing performance will 

be analyzed according to the assurance and assess-
ment of food quality provided by the Good Practic-
es, FD. Overall, this process can be estimated on the 
four stages: forward tracking, backward tracking, and 
quality control.  The first two refers to the information 
searching in the flow from the raw materials up to the 
destination – customer, and in reverse pattern (Yu et 
al., 2016). Good tracking mechanism will mean that 

the up-to-date information from all the stages is avail-
able and used for reasonable evaluation of the product 
quality and reasonable optimization of the logistics 
system. The latter term is more sophisticated as the 
final value of the food quality is determined based on 
the data obtained through several stages, including the 
quality of raw materials, productions, transportation, 
sales, and after purchase satisfaction – rating. 

Based on the defined parameters the evaluating 
scheme has been generated for Company A. Assess-
ment is based on information from the organization’s 
financial statement and publicly scoring systems .All 
of the values were ranked on the level from 1 to 10, 
creating a total score of 90 for all the values of as-
sessment (Table 1). 

Table 1 – Assessment of food tracing system in Company A

Evaluation Criteria Score (1- the lowest performance, 10- the highest performance)
Forward tracking
Timing 4
Accuracy 7
Backward tracking
Timing 3
Accuracy 5
Classification of food quality
Raw material information 9
Manufacturing information 7
Distribution information 5
Sales information 6
Customers’ feedback 6
Total 90/100

As it can be seen from the table the primary weak 
spots in the chain are related to the tracking and the 
distribution channels, so the special attention will 
be paid on these factors when the process of supply 
chain optimization will be performed. 

Supply chain optimization – principal compo-
nent analysis

The optimization of the food tracing mechanism 
is planned to be achieved with finding the compo-
nents that may significantly increase the perfor-
mance of AI-based food logistics for company A. 
The fundamental components were derived from the 
evaluation criteria. There are a lot of parameters that 
may affect the logistics process; the influences may 
have the direct connection to the supply chain man-
agement like transportation or storing mechanisms, 
and may also have the indirect causality like market-

ing, external systematic risks, and social instability. 
Considering all these components will be inefficient, 
so the principal component analysis (PCA) will be 
implemented in this study. 

PCA is a widely used technique for working 
with high-dimensional big data. It is a method of 
statistical summarization that identifies the compo-
nents with the greatest impact on the outcome. For 
instance, in a dataset with 100 variables that exhibit 
100% accuracy with a 3% degree of deviation, PCA 
can determine 5-10 components that contribute the 
most to the outcomes, making it possible to examine 
the minimized number of components. However, the 
downside is that when the number of features is re-
duced, accuracy decreases and deviation increases. 
Therefore, it is crucial to find an optimal trade-off 
value that will provide at least 95% accuracy. In 
other words, PCA replaces a set of n variables with 
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n factors such that any observation on the original 
variables becomes a linear combination of the n fac-
tors that are uncorrelated. The objective is to identify 
a few variables that account for a high percentage of 

the variance in the observations. For Company A, 
the resulting PCA analysis revealed the variances for 
each of the components. The top 8 components are 
shown in Figure 4.

 
Figure 4 – The results of PCA analysis showing the top 8 components with their variance score  
 
From the given graph the maximum weight for the Company A’s food logistic system is 

distributed among the parameters 1-3, which are respectfully refer to the “temperature for products 
transportation”, “season of time”, and “marketing”. The results of the found components are 
consistent with the sector of the considered companies operation. The likelihood of the AI 
performance increasement will be calculates with the variance (Formula 1) and standard deviation 
(SD). From the SD for the first three PCA (Table 3) the fraction of variance shown in Fig. 4 can be 
derived and furtherly summed to reveal that the inclusion of the additional two or three mentioned 
factors will increase the accuracy of AI for about 95.6% and 97.7%, respectively.  

 
Table 2 – The SDs of factor scores for the first 3 PCA 
 
Factor PCA 1 PCA 2 PCA 3 
SD 11.54 3.55 1.78 

 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (%) =  PCA12

PCA12 +  PCA22 + PCA32 

87.3% =  11.542

11.542 +  3.552 + 1.782 
 

Formula 1 – The calculation of variance for PCA1 
 
Conclusion 
 
We obtained several important insights that can be discussed based on the results of the 

conducted research. First, as can be seen from the iterative k-mean clustering – six iterations were 
enough to separate chosen companies in terms food-tracing mechanisms they utilize.  Insight 1: As 
was expected, certain companies are prone to have lower tracing performances due to peculiar 
differences in products they might have from one another.  

The silhouette and elbow methods unveiled the optimal number of clusters since each of these 
methods provides the trade-off of the number of components versus their differences. Even though 
the elbow method did not show clear results, the silhouette method proved to be working well in the 
chosen context. The results demonstrated that the optimal number of components for the analysis 
would be six, significantly reducing the scope of the evaluation. Insight 2: It is important to first set 
such boundaries in the evaluation of the enterprises’ performance in regard to particular factors, in 

Figure 4 – The results of PCA analysis showing the top 8 components with their variance score 

From the given graph the maximum weight for the 
Company A’s food logistic system is distributed among 
the parameters 1-3, which are respectfully refer to the 
“temperature for products transportation”, “season of 
time”, and “marketing”. The results of the found com-
ponents are consistent with the sector of the considered 
companies operation. The likelihood of the AI perfor-

mance increasement will be calculates with the vari-
ance (Formula 1) and standard deviation (SD). From 
the SD for the first three PCA (Table 3) the fraction of 
variance shown in Fig. 4 can be derived and furtherly 
summed to reveal that the inclusion of the additional 
two or three mentioned factors will increase the accu-
racy of AI for about 95.6% and 97.7%, respectively. 

Table 2 – The SDs of factor scores for the first 3 PCA

Factor PCA 1 PCA 2 PCA 3
SD 11.54 3.55 1.78

Formula 1 – The calculation of variance for PCA1
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Conclusion

We obtained several important insights that can 
be discussed based on the results of the conducted 
research. First, as can be seen from the iterative k-
mean clustering – six iterations were enough to sepa-
rate chosen companies in terms food-tracing mecha-
nisms they utilize.  Insight 1: As was expected, cer-
tain companies are prone to have lower tracing per-
formances due to peculiar differences in products 
they might have from one another. 

The silhouette and elbow methods unveiled the 
optimal number of clusters since each of these meth-
ods provides the trade-off of the number of compo-
nents versus their differences. Even though the elbow 
method did not show clear results, the silhouette meth-
od proved to be working well in the chosen context. 
The results demonstrated that the optimal number of 
components for the analysis would be six, significant-
ly reducing the scope of the evaluation. Insight 2: It 
is important to first set such boundaries in the evalua-
tion of the enterprises’ performance in regard to par-
ticular factors, in our case food traceability. It helped 
us to focus specifically on a similarly small number of 
clusters, saving time for comprehensive analysis.

Food tracing estimation criteria revealed In-
sight 3: The tracking and distribution routes are the 
chain’s two main weak points, and they both need 
to be strengthened in order to deliver a more effec-
tive and economical supply chain. The company’s 
performance may be enhanced, and the supply chain 
can be optimized, with the aid of the assessment 
method. Which was further developed with the prin-
cipal component analysis.

In conclusion, it can be seen that the Company 
A’s food logistic system is heavily dependent on the 
three parameters of “temperature for products trans-
portation”, “season of time”, and “marketing”, and 
the some or all of this factor in the AI adaptation can 
increasing the accuracy of supply chain management 
by 95.6% and 97.7%, respectively. The results of the 
analysis provide a basis for further exploration of 
the system’s capabilities and to identify new ways of 
optimizing the digital logistics and proves that more 
specific approach resulted in greater performance 
than the utilization of the generalized mode. The 
study was conducted on the dairy product company 
and can be redirected on the other specific fields of 
agricultural logistics that similarly have individual-
istic transportation conditions. 
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